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The contact problem of the impression of a strip-like punch into a half-space when there is a power-law 

relationship between the stress intensities and the strain rates [I, 21 is considered in formulating a non- 

linear theory of steady-state creep. Using the generalized principle of the superposition of displace- 

ments [l, 21, the problem is formulated in the form of the same integral equation as in an analogous 

problem in [3]. Unlike [3], a closed solution of this equation is constructed. This is achieved by using a 

spectral relationship for the integral operator which is generated in a finite interval by a symmetric 

difference kernel in the form of a MacDonald function. 

A spectral relationship, containing spheroidal wave functions which are a generalization of 
Mathieu functions, was established in [4] using a method of the potential theory-type in 
another form. However, the eigenvalues were not obtained in explicit form and the complete 
conditions of the normalization of the eigenfunctions were not indicated. Meanwhile, analytic 
difficulties were encountered when calculating the eigenvalues in explicit form. The problem 
of deriving the above-mentioned spectral relationship in a constructive form using the method 
developed in [S] is therefore discussed again below. This relationship is completely established 
using generalized potential theory methods [3, 6, 71 associated with Euler-Poisson-Darboux 
equation and which, in the final analysis, differ from those in [4]. A relationship related to it is 
also established. This holds in additional semi-infinite intervals. Both of these can be used to 
solve many mixed problems in the theory of elasticity and mathematical physics. 

An extensive class of similar spectral relationships for orthogonal polynomials and their 
numerous applications to mixed problems in the theory of elasticity were presented in [8,9]. 

1. Let a punch which has the plan shape of a strip o=(z=O, -<XC=, -UC yea), be 
displaced only translationally in a vertical direction and impressed into the half-space z c 0, 
referred to a right rectangular system of coordinates O~yz under the action of certain moments 
and vertical forces p&x, y), which are distributed along its length and possess a finite 
equivalent force P. We shall assume that the material of the half-space is incompressible and 
obeys a power law oi = K&F (0 G h G l), where oi and ei are the intensities of the stresses and 
strain rates, respectively, and K and h are physical constants [l, 21. 

Starting from the well-known results in [lo], the generalized principle of the superposition of 
displacements we shall have 

(1.1) 
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A = c(h)K7, y = ; 

for the vertical displacements u&, y) (u,(x, y) will actually be velocities rather than displace- 
ments; however, for consistency in the subsequent treatment we shall use the term “displace- 
ments”) of the boundary points of the half-space due to the unknown normal contact stresses 
p(x, y) acting in the domain a. In (l.l), c(h) is a certain constant [lo] and c(2/3) =0, 
c(l) = l/(4@ and c(h) > 0 when 2/3 < h c 1. We henceforth assume that the latter constraint on 
h is satisfied. 

Now, by taking account of the known contact condition 

-w(x,y)=6-f(x,y) ((X,Y,O)EO) 

where 6 is the settlement of the punch and f(~, y) is a function which characterizes its base, 
using (1.1) we arrive at the following integral equation in p(x, y) 

0.2) 

A comparison of the asymptotic forms of the left- and right-hand sides of (1.2) when 
x2 + y2 + = yields the relation 

from which 6 is actually determined. 
Next, we change to dimensionless variables in the integral equation (1.2) by replacing X, y; 5, 

n by ax, ay; a& a~, respectively. As a result, we obtain the equation 

(1.3) 

o,=(z=O, --oo<x<q -l<y<l) 

c~(xv~)=A~p(wy), g(x,y)=& -fo(x,r)lh 

6(j=6/a, f~(x,y)=f(ax,uy)la, h=(l-h)/2 

Hence, the solution of the contact problem in question reduces to solving the integral 
equation (1.3). The generalized displacements W(X, y) of the boundary points of the half-space 
outside the strip punch are, according to (l.l), given by the formula 

W(XPY) = II cp(ks wwl 
oo[(x-Q2 +wl)*lp+fi' 

(x,Y)En\% 

where 

l-I = (z = 0, - 00 < x, y < -}, w(x, y) = r-a-+4, (xv y)lh 

(l-4) 

Using a Fourier integral transformation with respect to the variable x and a formula in [ll, 
p. 443,3.77X6], Eq. (1.3) can be reduced to the following equivalent one-dimensional integral 
equation 
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q,(y) = 7 f+%x,yP& g,(y) = 7ghyPPdr 
.-ID -00 

f,(y)= F,(P)&(Y). F,tp)=a-K2'-'r(~+M)lsl-' 

where K,(y) is a MacDonald function. Relationship (1.4) now takes the form 

1 q&IIY -rll) 
w,(u)= f _, ly_ql” yrs(rlwl* IYl>l 

v,(Y)=$ w,(y) = yw(x,y)e% 
s -00 

2 Let us construct the solution of the integral equation (1.3), or of Eq. (1.5) which is 
equivalent to it, using generalized potential theory methods, For this purpose, we will intro- 
duce the generalized potential 

into the treatment. 
Then, using the well-known results in [3,6,7], it can be shown that the integral equation (1.3) 

is equivalent to the following boundary-value problem for the domain which is external to CO, 

a*u a*u !!2+3Eav=, ((x,y z)Tw ) 
aX,+ayl-+ a22 z a2 ’ O (2.2) 

U(XIY,Z)lLI() =g(xtY) ((-GYtO)~~o) 

u(x,y,z)=Qr-‘-2P (r+=, r= x’+y +z j-, Q= PAh /a*) 

The differential equation in (2.2) is called the Euler-Poisson-Darboux differential equation 
and some properties of this equation have been indicated in [12]. 

After the solution of the boundary-value problem (2.2) has been constructed, the density of 
the sources, that is, the solution of Eq. (3.3) is determined using the formula [6] 

(2.3) 

Using a Fourier transformation with respect to the variable X, the bounda~-value problem 
(2.2) can be reduced to the following equivalent bounda~-value problem 

E!!+?I++*y=o ((y,z)-gL) 
ay2 az2 

(2.4) 

V(YJs)ITLO = t&(Y) ((Y.0) E L) 

Wy,z,s)+O oJ*+z*+-) 
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for the whole yz plane with a cut along the length L = {z = 0, -1 G y 6 1) and, moreover, by 
(2-l) 

At the same time, formula (2.3) acquires the form 

In the final analysis we obtain that the integral equation (1.5), in turn, is ~uivalent to the 
boundary-value problem (2.4) and that their solutions are related to one another by 
relationship (2.6). 

We will construct the solution of boundary-value problem (2.4) by the method of separation 
of variables. Let us put 

V(y,z,s> =lzI_” WCY,Z,@ (2‘7) 

and introduce the elliptic coordinates [13] 

w =y+iz =chc, C=u+iu, U.&O, --~F<u~Tc (2.8) 

y=chucosu, z=sh#sinv (2.9) 

Using the conformal mapping (2.8), the complex plane w with the cut L is mapped onto the 
half-strip Fl+ = (u r 0, -rr < ‘u d A) and the line u = 0 corresponds to twice the enveloped piece 
L of the w plane. 

Taking (2.9) into account, we put 

W(y,z,s) = W(chucosu,shhusinu,s) = Wo(u,u) = F(u)G(u) (2.10) 

Using well-known results (131 and after some elementary algebra, we reduce the partial 
differential equation in (2.4) to the following two ordinary differential equations 

F”-[a+2qch2u-u(l-u)sh-2u]F=0, OQUC= (2.11) 

G”+[a+2qcos2u+u(l-u)sin-2u]G=0, -x<z)~% (q=s*14) (2.12) 

where CI is a separation parameter. It can be seen that, if one formally puts u = iu, Eq. (2.12) 
reduces to Eq. (2.11). We can therefore confine ourselves to one of them, Eq. (2,12), for 
example. This equation must be considered subject to the periodicity condition 

G(u) = G(u + 21~) (2.13) 

Equation (2.12) is transformed by the substitution G(u) = 4 sinv H(u) into the differential 
equation for spheroidal wave functions [13, p. 1701 

(2.14) 

h=a-%+2q, 0=-qr=:-$2f4, KZZM-_CL 
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Equation (2.14) and its solution have been treated in detail in 
The spheroidal wave functions 

Q’cs,(cos~,O)= ~(-l)‘~,l(8)Q~+*,(cosu) 
,=--00 

[14] as well as in [15]. 

(2.15) 

(Ocu<x) 

are the two linearly independent solutions of (2.14). In (2.15), v is the characteristic index of 
Eq. (2.14), where h = AC,(O) and J.:(O) = v(v+ 1), c(x) and Q:(X) are Legendre functions of the 
first and second kind, respectively, and the coefficients u&(e) are determined from three-term 
recurrence relations~ps 113, p. 171, (9)]. These coefficients are chosen such that 

4Lo (0) = dL,,o te) = a;,;(0), a;,o(~) =: 1 

Then [13] 

grte) = dv_,,_,w = rt&K +$i *) - rtv+K+l) a-K(e) 

l7v+iC+2r+l) v*r 
(2.16) 

In order to determine v and to separate one of the solutions (2X), we note that, according 
to the second relationship of boundary-value problem (2.4) where, as a consequence of (2.9), it 
is necessary to put y = cost in the cut along L, the required potential must be an even function 
of V. This condition, together with the periodicity condition (2.13) and Eq. (2.14) constitute a 
Sturm-Liouville boundary-value problem. Using the latter and the well-known trigonometric 
expansions of the functions P~(cosz1) and Q~(cosu) [16, p. 1471, we immediately obtain 

v=n-K (n=0,1,2,...) (2.17) 

and the first solution of (2.15) has to be taken. However, as follows from (2.16) and (2.17), in 
the case under discussion 

&(e)=O when rb -[n/21-1 

~n~quently, the first series in (2.15) is ter~nated to the left at a certain term. allowing for 
this and the well-known relationship between Legendre functions of the first kind and Gegen- 
bauer polynomials C!#) [16, p. 177, (4)], we finally find 

G,“(U) = &iG&,"c, (COS 1). e) = 2K(sinu)K-Xr(l-2r) 
r(l -K) 

(2.18) 

x &+r_m (e)c$-*+0s uj tn = 2mj 

G;(u) = ~Ps~_,(cosu,e) = 2’fsin u)M-’ r(l-2K) z (-l)‘-‘“(2r+l)! x 

r(i-q r=O r(b+2- 2K) 

XaZxm+,_lc,r_m (e)&: tc0s u) (8 = 2m + 1) 

(K=j$-J.l, m=0,1,2 ,..., 0<u<7t) 

The functions G:(u) are evenly continued in the interval -rc < v c 0. 
Since the coefficients g,(0) satisfy three-term homogeneous recurrence relationships, they 

can be found from these, apart from a constant factor. In order to determine this factor, we 
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normalize the functions G:(u) in the following manner 
that used in [14] when n = 0) 

[14] (this normalization differs from 

~[G;(u)12du= 4, h, = 

n!/[r(n+1-2K)(n+1/2-K)] 

l/I-(2-2@, n=O 

Making use of the orthogonality of Gegenbauer polynomials, this relationship can be written 
in the form 

St Y~,[a.x_x,,_(,/21(e)12 = h, 
r=O 

(2.19) 

1 
f(2r), n = 2m 

yKn, = (m =0,1,2,...) 

f(2r+l), n=2m+l 

f(X) = (X)[r(X+l-2lC)r(%+ l/ 2 -K)]-’ 

Only the value of the absolute magnitude of the above-mentioned factor is determined using 
(2.19). In order to determine its sign, we put u$(e) > 0. We can also put 

which yields 

(-l)t”‘z~G~(u)(sin u)+]lV,o > 0 

~(-l)‘~,,_,,,,,(e)>o. V=n-K (2.3 
r=O 

In the limiting case when u+ 0, it can be shown that the sequence g,(fl) >O is not 
terminated and the three-term recurrence relationships for determining them reduce to the 
corresponding relationships for the coefficients of the periodic Mathieu functions ce,(u, e) 
[13, p. ES]. Here 

G:(u) = (-1)tn’21@&e,(u,0) (2.21) 

and the normalization conditions (2.19) and (2.20) reduce to the well-known conditions for the 
normalization of the functions ce,(u, 0) [13, p. 1561. 

We now consider Eq. (2.11). The unique solution of this equation, which is bounded on the 
semi-axis 0 s u < = and vanishes at infinity has the form [13-151 

q(u) = &S,$)(chu.8) (0 s u c -) (2.22) 

where S,“‘~)(.Z, (3) is a spheroidal wave function of the third kind. The following representation 
can be obtained for this function 
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&+, (9 = 

e-irr(3-r)12 

&+l-r UN 

[ 1 
-1 

C-m = ~~~-l)l-[n’2lu~__,,,_(.121(e) 

Hence, by (2.7) and (2.10), the boundary-value problem (2.4) possesses a normal solution of 
the form 

(2.24) 

The functions F,“(u) are expressed by formulae (2.22) and (2.23) and the functions G,“(U) 
are expressed by formulae (2.18) and the variables y, z and u, u are related by (2.9). 

In order to calculate the density of the sources which corresponds to the potential (2.24) in 
explicit form, we make use of well-known formulae in [13 p. 173, (20) and p. 174, (28)] and 
using these, we obtain the representation 

SzC3)(chu,0)= ie~(lLsin1YL)-‘[e~~~“_,(8)Qs~(chu,8)+ 

+sin(2~)e-2~K,“(B)QsX,_,(chu,8)1 0 C u c m 

v=n-K, K=J$-_cL, e=-q=-s2/4 

(2.25) 

where K:(e) is the known coefficient of the relation between the functions SF)(z, 0) and 
Q:,_,(z, 0) [13, p. 175, (29) when k = 01, &(O) = lim, +,+,,, P,,_,(8), and the functions Qs,“(ch u, 
e) and Q&,(ch u, 0) are expressed by the second formula in (2.15), if one formally puts v = iu. 

We now note that, in obtaining the representation of Qs,“(chu, 0) by this means, the 
functions Qsv+,Jch 2~) become infinite when r 6 -[n / 2]- 1 while the corresponding coeffi - 
cients &:‘:,(e) = 0, and the series being considered is therefore not terminated. The latter leads to 
the need to pass to the limit. Making use of the formula in [16, p. 140, (2)] 

Q:(z) = eZti r(v+K+l)[r(v-K+l)]-‘Q,-‘(Z) 

and using (2.16) in the expression e&(@Qt+,b(ch u), we pass to the limit as V+K +PL As a 
result, we arrive at the representation 

Qs; (ch u, 0) = 
n ! ev2m -[n/Z]-1 

& + 2p) _C (-1)“‘~,,(e)Q;=2,(ch u) + r---o0 
(2.26) 

+ iit 
r=-[n/2] 

(-l)‘av”,,,(0~~+“,z,~chu). 0 c u < m 

v=n--, K=j$-j.l, n=0,1,2 ,... 

For the functions Qs!.,,(ch u, Cl), we shall have a representation in the form of the following 
series which is terminated from the left 

Q.& (ch u, 0) = 
r=_:,2I (-l) ‘~v”,,@)@v-,-2,(chu) Cm 
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For SU~~~U~nt PUfpSeS, it is conve~e~t to express the fictions @(z) in (2.26) and (2.27) 
by the formula [16, p. 134, (34)] 

-v,-v-r;l-~;t + 
2+t 

(2.28) 

+(z + I)‘(2 - 1y W+K+Wt-Kl 
I-(14-v-r) ( _v v+K,l+K z-1 

1- , ;--- 

2+I )I 
where F(a, b; c; z) is a Gaussian hypergeometric function. 

Starting from (2.6), (2.9) and (2.24), we now obtain 

(2.29) 

Next, by using formulae (2.5), (2.23) and (2.25)-(2.291, after certain tra~sfor~tions we 
arrive at the spectral relationship 

’ qlwtr -41 
I 2 
_, Iy-ul’ t1-u ) -X12Ps~__,fU,%jdU = &(l- y2)*‘2Ps:_,(y,8) (2.30) 

a, = 
{ 

1, n=2nJ 
-1, n=2mc1 

gyfj) = (-lp21 
II it t-1)‘a,r,*,(@)K,,,+2,(2~) 

r=-[n/Z] 

In order to obtain a relationship related to (2.30) which is valid in rays ly I> 1, we note that, 
according to (2.9), the line 1, = 0 corresponds to a ray y > 1 and the line 2) = it corresponds to a 
ray y c -1. On taking account of the latter and again using (2.5), (2.23) and (2.25)-(2.29), we 
arrive at the relationsbip 
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According to the Schwartz symmetry principle for analytic functions, relationships (2.30) 
and (2.31) can be analytically continued in the band I Rep I< l/2. 

In the limiting case when l.t + 0 according to (2.21) the spectral relationship (2.30) becomes 
the well-known relationship in [17] and (2.31) takes the form 

iKo(lSliY- I) ( u ce, arccosu,-q)(l-~2)-Hdu=p,c,(y)Fek,(InlyI+~~,-q) 
-1 

lyl>l, n=0,1,2 ,... 

p, = --x ce, (0, -4) / Fe’k, (0, -4) 

C”(Y) = -I 1, n=2m 

sgny, n=2m+l 

where Fek,(z, 0) is a modified Mathieu function of the third kind [13]. 

3. Considering now the solution of the integral equation (1.5) of the contact problem being 
considered, we put 

(3.1) 

where the coefficients (X,)z4 are unknown. We then substitute (3.1) into (l.S), interchange the 
order of summation and integration and make use of the spectral relationship (2.30). As a 
result, we shall have 

w-Y2)K’z ~x”h,JqK(Y.~)=fi(Y) (iYl<l> 
ll=Q 

Hence, on taking account of the condition for spheroidal wave functions to be orthogonal 

we obtain 

X” =& f" =~,f~(Y~(l-Y2)-K'2~~~_.(y,e)~ 
” n 

(3.2) 

Thus, the solution of Eq. (1.5) is expressed by formulae (3.1) and (3.2). 
In order to determine the Fourier transform of the reduced displacements beyond the strip 

punch, we substitute the function (p,(y) from (3.1) into (1.6) and take account of relationship 
(2.31). Then 

- vf 
w,(y) = sgn y(y* - lY’* E umlYl,w (lyl> 1) 

n=o 3L,h, 

For the particular configuration of the strip punch g(x, y) = cossx (S > 0), the integral 
equation (1.5) takes the form 

d, = 6% 2”--’ l-(p + &)s-” 
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Since the solution of this equation is an even function, the coefficients in (3.1) X2m+l = 0 
(m=O, 1,2,. . . ). The remaining coefficients X,, are determined using formula (3.2), where it 
is necessary to put n = 2m. Using the representation (2.18), we obtain 

hrn =(-l)m J;;2”ds 
U% - K) 

&_,,_,(Q) (m = O,l,Z...) 

Note that, in the limiting case when u +O, the results described here for a strip punch 
reduce to the well-known results in [18]. 

I wish to thank G. Ya. Popov for kindly drawing my attention to the paper by Belward [4]. 
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